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Systematic annotation of the primary targets of roughly 1000 known therapeutics reveals that over 700 of
these modulate approximately 85 biological targets. We report the results of three analyses. In the first
analysis, drug/drug similarities and target/target similarities were computed on the basis of three-dimensional
ligand structures. Drug pairs sharing a target had significantly higher similarity than drug pairs sharing no
target. Also, target pairs with no overlap in annotated drug specificity shared lower similarity than target
pairs with increasing overlap. Two-way agglomerative clusterings of drugs and targets were consistent with
known pharmacology and suggestive that side effects and drug-drug interactions might be revealed by
modeling many targets. In the second analysis, we constructed and tested ligand-based models of 22 diverse
targets in virtual screens using a background of screening molecules. Greater than 100-fold enrichment of
cognate versus random molecules was observed in 20/22 cases. In the third analysis,selectiVity of the models
was tested using a background of drug molecules, with selectivity of greater than 80-fold observed in 17/22
cases. Predicted activities derived from crossing drugs against modeled targets identified a number of known
side effects, drug specificities, and drug-drug interactions that have a rational basis in molecular structure.

Introduction

Discovery of novel lead compounds through computational
exploitation of experimentally determined protein structures,
either derived from screening of databases or through focused
design exercises, is well-established,1 and methodological
development within the docking field remains a very active area
of investigation for a large number of research groups.2-12

Methods for predictive computational modeling of ligand
activity in the absence of protein structure have a long history
and have also met with important theoretical and practical
successes.13-29 It is certainly desirable to have a high-resolution
structure for a protein that is the subject of therapeutic
intervention, but frequently one is not available. Further, when
considering a different but related question involving the
potentialsecondaryeffects of small molecules, the problems
involving absent protein structures become worse.

Proteins whose structure and function depend on localization
within cell membranes are the source of a large number of
pharmacological effects, and it is unlikely that general methods
for solution of structures of these protein classes will be
developed in the short term. In terms of their importance as
therapeutic targets, membrane-spanning G-protein coupled
receptors (GPCRs) and ion channels were the primary biological
targets for nine of the top 20 selling prescription drugs
worldwide in the year 2000.30 Each of the proteins that is
interesting as a primary target may also be important as a source
of side effects. For example, the muscarinic receptors are
targeted therapeutically for urinary incontinence, but they also
are thought to be primarily responsible for the frequent side
effects of dry mouth, urinary retention, and sedation seen with
many drugs.31,32 Other proteins in these classes arenot the
desired targets of drugs, but they have been suggested as the
explanation for serious drug side effects. For example, the hERG
potassium channel is the likely effector of the lethal side effects
of the antihistamine Seldane (terfenadine, which is now
withdrawn from human use).33 Membrane-bound transporter

proteins (e.g. P-glycoprotein) and the metabolic enzymes (e.g.
cytochrome P450 isoforms) form an increasingly important and
well-characterized class of proteins that explain aspects of
genetic variation in drug efficacy and many aspects of drug-
drug interactions.34-37 Modern drug discovery, being so precari-
ously dependent on expensive human trials (or postmarket
surveillance), would benefit greatly from improvements in our
ability to predict drug activity on a scale that would illuminate
organism-scale effects.

In this paper, we apply methods that are ligand-focused
toward modeling a significant fraction of the space of known
drugs, with the goal of demonstrating a first step toward
computational prediction of drug side effects and drug-drug
interactions. We employed four computational methods to model
drug/drug similarities, target/target similarities, and to construct
models of the binding requirements of the targets. The methods
are described briefly in this paper (each having been validated
in other reports):

1. Morphological Similarity. Given query and object
molecules, this method rapidly optimizes the pose of the query
to maximize 3D similarity to the object molecule. We have
shown previously that the computation has the property that
pairs of molecules judged to be similar tend to bind the same
proteins.19

2. Molecular Imprinting. For computing very large numbers
of pairwise similarities, it is computationally efficient to
rerepresent molecular structure as a vector of similarities to a
fixed set of basis molecules. Distances between these vectors
are used as a surrogate for the more expensive similarity
computation.38,39

3. Optimal Multiligand Superpositioning. Given a small
number of competitive ligands for a protein binding site, this
method produces an optimal superposition, maximizing pairwise
similarities while minimizing total volume.18

4. Ligand-Based Virtual Screening.Given a superposition-
ing of multiple molecules that form a hypothesis as to their
preferred binding mode to a target (amodel), this method
functions as a docking program to rank a set of input molecules
according to their degree of fit to the model.18
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These methods and the antecedent Compass method have
been the subject of a number of validation studies and have
been used successfully in lead discovery and optimization, in
the context of proprietary discovery projects as well as published
work.13-15,17

The present paper addresses two questions that the prior work
has not. First, will the methods yield robust results when applied
to a significant fraction of the space of known drugs? Second,
can systematic modeling of therapeutically relevant biological
targets based solely on their known ligands make it possible to
rationalize the off-target effects of drugs or possibly topredict
them? These two questions required a curation effort to identify
the specific biological targets of the space of small molecule
human therapeutics. The task was challenging, since much of
the pharmacology literature has focused on narrow chemical
structural classes and is descriptive (as opposed to mechanistic)
in describing pharmacological effects. We identified linkages
between drugs and their primary and secondary biological
targets, covering 979 small molecule drugs in all (of roughly
1000 approved therapeutics). Given this information, we made
two types of computations. The first involved drug/drug and
target/target similarities, computed on the basis of ligand
structures. The second involved the induction of ligand-based
models for 22 diverse targets whose performance would be
quantified with respect to virtual screening and selectivity. We
report results in three areas.

1. Drug and Target Similarities. Comprehensive comparison
of drug/drug pairs and target/target pairs formed the basis for
clustering and for direct analysis of distributions of pairwise
similarities. Drug pairs sharing a target had significantly higher
similarity than drug pairs sharing no target, and target pairs with
no overlap in annotated drug specificity shared lower similarity
than target pairs with increasing overlap.

2. Ligand-Based Virtual Screening.Ligand-based models
of 22 diverse drug targets were constructed in a fully automated
computation. Virtual screening experiments testing the ability
of the models to identify cognate drugs against a background
of screening molecules showed excellent enrichment in the great
majority of cases.

3. Selectivity of Ligand-Based Models.Selectivity of the
22 models was tested by measuring the ability of the models to
identify cognate drugs from a background of other drug
molecules, many of which constituted easily confusable classes.
Enrichment results quantitatively paralleled those in the virtual
screening experiments. Analysis of the high-ranking putative
false positives yielded a number of cases where there is a
specific biological explanation for the predicted cross-talk
among the ligands used to construct a model and the nominal
nonligands found to fit the model well.

Taken together, these results represent a substantial validation
of our ligand-based modeling and molecular similarity methods.
They also mark a first step toward systematic computational
modeling of a large enough fraction of pharmacologically
relevant targets to support practical hypothesis generation of
side effects and drug interactions in preclinical drug discovery.

The software that implements the algorithms described here
is available free of charge to academic researchers for noncom-
mercial use (see http://www.jainlab.org for details on obtaining
the software). Molecular data sets presented herein are also
available.

Methods
The following describes the methodology used in this paper,

molecular data sets, detailed computational procedures, and
quantification of performance.

Computational Methods.The computational methods used
here have been reported in previous methodological papers
focusing on molecular similarity,19 fingerprint-based chemical
indexing,38,39and ligand-based modeling18 and will be described
only briefly here.

Morphological Similarity. Given query and object mol-
ecules, this method rapidly optimizes the pose of the query to
maximize 3D similarity to the object molecule. Figure 1A
illustrates the computation. Morphological similarity is defined
as a Gaussian function of the differences in molecular surface
distances of two molecules at weighted observation points on a
uniform grid, yielding a value from 0 to 1. The distances that
drive the computation are depicted as the lines at the right of
Figure 1A after the query molecule has been aligned to the
object molecule. The surface distances computed include both
distances to the nearest atomic surface (black lines) and distances
to donor and acceptor surfaces (blue and red, respectively). In
the case shown, the molecules are competitive nicotinic agonists,
and their optimal similarity is 0.94, reflecting highly similar
surfaces despite differences in scaffolding (an oxazole versus a
pyridine) that can confound 2D methods.

The function is dependent on the relative alignment of two
molecules, and the algorithm for optimizing the similarity of
one molecule to the fixed conformation of another makes use
of the observation points (illustrated at the left of the figure).
The alignment problem can be addressed with an efficient
algorithm, because the molecular observations that underlie the
similarity function are local and are not dependent on the
absolute coordinate frame. So, two unaligned molecules or
molecular fragments that have some degree of similarity will
have some corresponding set of observers that are “seeing” the
same things. Optimization of the similarity of two unaligned
molecules is performed by finding sets of observers of each
molecule that form triangles of the same size, where each pair
of corresponding points in the triangles are observing similar
features. The transformation that yields a superposition of the
triangles will tend to yield high-scoring superpositions of the
molecules. The problem of flexibly aligning one molecule onto
another is addressed with a divide and conquer algorithm,
making use of molecular fragmentation and incremental con-
struction to ameliorate the exponential dependence of confor-
mational space on the number of rotatable bonds. The overall
computation is roughly linear in the number of rotatable bonds
within the query molecule, taking a few seconds per bond on
standard desktop hardware. Additional details of the method
can be found in two previous reports.18,19

Molecular Imprinting. In making large-scale computations
of molecular similarity, even with fast methods, the problem
posed in all-by-all computations is computationally challenging.
For the work here, some computations involved on the order
of 1 million such comparisons, and a surrogate computation
was employed making use of molecularimprints. The idea is
to make use of a smallbasis setof molecules to which to
compute molecular similarity for a large number of molecules.
The process is illustrated in Figure 1B, making use of 20 basis
molecules. Each input molecule is flexibly aligned to a fixed
conformation of each of the basis molecules. For each input
molecule, the result is a 20-dimensional vector, where each value
within each vector represents a single similarity computation
(yielding a value between 0 and 1).

Distances between these vectors can be used as a computa-
tionally cheap surrogate for the direct molecular similarity
computation. In Figure 1B, three molecules are shown that all
target the serotonin reuptake transporter (among other things).
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Their similarities to the first three basis molecules are relatively
low, but their similarity to the last is higher. The pattern of
similarities represented within the vectors gives rise to a
correlation between similarity inferred on the basis of the
Euclidean distance of vector pairs and the corresponding direct
computation of pairwise molecular similarity. Additional details
on this method and its application to molecular diversity and
bioavailability computations can be found in two previous
reports.38,39 The basic concept has been exploited by other
groups as well.40,41

In addition to offering a method for comparing two molecules
directly, we employed this method to compare two targets, based
on the structures of their cognate ligands. For each pair of targets
A and B (where A and B may be the same target), we compute
all pairs of imprint distances of the cognate ligands of A to the
cognate ligands of B. Comparisons of a ligand to itself are
omitted (arising from either overlap in drug specificity between
different targets or from self/self target comparison). We defined
the target similarity as the 80th percentile of the ligand
similarities between the targets. This was done to avoid strong
dependence on outliers (which tend to skew the mean similarity
in an unpredictable manner) and to focus the similarity of targets
on sharedsimilarity in ligands. If a significant proportion of

the ligands of A are similar to the ligands of B, the target
similarity is high, even if a fraction of the ligands are very
different.

Optimal Multiligand Superpositioning. GivenN molecules
that are mutually competitive at a protein’s ligand binding site
as input, the object of the superpositioning method is to produce
a joint superposition that is predictive of the relative bioactive
poses of the input molecules. The method combines the
morphological similarity function (described above) with a term
to minimize overall joint molecular volume. The space of joint
molecular poses is searched to maximize an objective function.
The objective function is the product of (1) the sum of all
pairwise similarities and (2) the total empty volume in a sphere
of fixed size centered on the superimposed ligands. This biases
the solutions of joint superposition to the smallest possible
volume, given equivalent joint similarities. In the remainder of
the paper, such superpositions will be referred to asmodelswhen
they are used as the targets for virtual screening.

Figure 2A illustrates the methodology using three competitive
µ-opioid agonists as input. The output of the procedure is a list
of high-scoring overlays of the input molecules (by default 100
are provided). The highest scoring hypothesized superposition
is depicted in the figure. Identifying the proper relative alignment

Figure 1. Molecular similarity and molecular imprinting methods (see the text for details).
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of the morphinans (shown in green at right) is not challenging,
but fentanyl (shown in atom color), which has a very different
chemotype, is more difficult. This particular model will be
discussed in some detail later. Our previous report provides
additional details on the method and presents the results of
screening enrichment experiments on four targets of therapeutic
interest.18

Ligand-Based Virtual Screening. A model such as that
shown in Figure 2A can be used for visualization purposes in
medicinal chemistry design exercises. Such models may also
serve as the target for virtual screening, in much the same was
as a protein structure is used with docking algorithms. The input
is the model and a list of molecules to be screened, with the
object being to rank molecules on the basis of their ability to
mimic the surface displayed by the ligands within the model.
Given a model consisting ofM ligands and a query ligand, the
procedure yields a score between 0 and 1 along with the specific
pose of the query ligand that gives rise to the reported score.
The query ligand is flexibly aligned to maximize similarity to
each of theM ligands in the model separately, resulting in a
pool of poses. For each of the query ligand poses within the
pool, the mean of the similarity score to theM model ligands
is computed. The maximum such score is defined as the score
of the query ligand and is returned along with the corresponding
pose. So, the score of a new ligand is intended to reflect its

ability to mimic, using a single pose, the model that is
represented by the joint superposition of allM molecules.

Figure 2B depicts this process, using the model from Figure
2A and four query molecules. The first two are competitive
µ-opioid agonists, the next is a drug that does not target the
opioid receptor family, and the last is a typical screening
molecule. The output of the procedure is shown at right of the
figure, which lists some information about the query molecules
and their final scores. Both pentazocine and methadone score
significantly higher than the noncognate ligands. Quantification
of the degree of separation the models achieve between cognate
drugs and large numbers of screening compounds and noncog-
nate drugs will be presented later. Additional details about the
use of models as the targets for virtual screening, including a
comparison to 2D methods, can be found in a previous report.18

Molecular Data Sets.We identified 1125 small molecule
agents approved for human use through the National Drug Code
Directory, which serves as a repository for universal product
identifiers for human drugs in the United States (http://
www.fda.gov/cder/ndc/). This list is dominated by agents that
are commonly considered therapeutics, but there are examples
of insecticides (e.g. permethrin), bulk nutrients (e.g. glucose),
vitamins, and other small molecules that are not the focus of
the present study. We focused on those agents whose primary
use is therapeutic and whose desired biological target is either

Figure 2. Generation of ligand-based model and use as a model for virtual screening (see the text for details).
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a human protein or a protein within a viral, bacterial, or fungal
human pathogen. Where possible, the biological effectors of
secondary effects of the drugs were also identified.

In keeping with the postgenomic molecular characterization
of biochemical networks, we sought to annotate the biological
effectors of pharmacological effects down to specific binding
sites on assemblies of gene products, making use of public
resources such as Entrez Gene for definitive naming of specific
protein subunits. In the easiest cases, a single human gene
product was identified. For example, the primary target of over
20 small molecule drugs is the opioid receptorµ, which is
officially named OPRM1 within Entrez Gene (GeneID 4988).42

In other cases, a common target name such as the “GABAA

receptor” corresponds to a pentameric assembly of multiple gene
products, commonly the following: GABRA1, GABRB2, and
GABRG2. The binding site for benzodiazepines is thought to
be a cleft between theγ2 andR1 subunits, while the endogenous
ligand GABA binds between theR1 andâ2 subunits.43

These distinctions become critical in computational experi-
ments, as the implicit assumptions frequently include competi-
tive binding among a set of ligands. So, the fact that barbiturates
and benzodiazepines both modulate the activity of the GABAA

receptorand the fact that their binding sites are separate are
part of our curated information. Of the 1125 drugs, we have
annotated the primary (desired) targets of 979 and, when
possible, have indicated secondary targets as well (which are
generally responsible for side effects). Overall, we have identi-
fied 271 targets, many of which are the pharmacological
effectors of multiple drugs. Roughly 25 primary targets cover
400 drugs, 60 cover 600, and 85 cover over 700. In the Results,
we make distinctions between primary desired effects by
referring to “primary” targets and side effects by referring to
“secondary” ones.

In our computational experiments, we focused on drug targets
for which we have identified the largest number of competitive
small molecule drugs. Molecular preparation protocols (detailed
below) had some impact as well on the ligands considered. For
the results presented, we used the ligands of a set of 48 targets
in an all-by-all molecular similarity computation. Figure 3 shows
examples of ligands for 22 of these targets, which formed the
basis for our ligand-based modeling computations. Both the
targets and the chemical scaffolds of their ligands are diverse.
Targets A-E are all proteins within bacterial, viral, and fungal
pathogens, with cognate drugs including azole antifungals,
â-lactam antibiotics, sulfa drugs, quinolones, and nucleoside
analogues. Targets F, H, and I are diverse but are all involved
in cardiac indications. Targets L-O are steroid receptor targets,
including both those involved in inflammation and those whose
natural ligands are the sex hormones. Targets J, K, and P are
all involved (though quite differently) in analgesia, with Q and
R involved in sedation. GPCRs are represented by I, J, S, and
T. Within this set of targets, there is diversity in function and
in ligand characteristics, but there are subsets of targets where
structural overlap exists among the proteins themselves as well
as their cognate ligands (e.g. the steroid and GPCR cases).

Diversity is an important feature in the computations that
follow, with the goal being that the methods work well across
all classes of targets and small molecules. Subtleties between
related targets with related ligands are also important, with the
goal being that the modeling approach will yield sufficiently
specific results that, for example, androgens would not be
confused with estrogens.

Computational Procedures.We used the same procedures
as in our report on the Surflex-Sim ligand-based modeling

method.18 Briefly, all molecules were subject to the same
preparation procedures, which involved automatic protonation,
ring search, protonated nitrogen inversion, and minimization
using a Dreiding-type force field. Up to 10 conformations were
retained for each molecule, to account for alternative ring
conformations and protonation geometries. It is important to
note that the molecular superposition methods described above
sample the conformational space of the ligands much further
than the initial sampling used to identify energetically reasonable
ring geometries, but the on-line search is currently limited to
acyclic bonds, necessitating this two-step approach. The ACD
screening set7 originally contained 990 molecules, and of these,
850 were correctly processed and used as a negative control in
screening enrichment experiments. The computations involving
known drugs included 979 molecules, which were processed
in exactly the same way as the screening compounds in order
to avoid any systematic difference between the drugs and
nondrugs. Of these, 230 represented the known cognate ligands
for the 22 targets shown in Figure 3.

Following preparation of the molecular data, Surflex-Sim
(version 1.31) was used for molecular imprinting and ligand-
based hypothesis generation and testing. Generation of the
molecular imprints followed the default practice (“Surflex-Sim
vector LigandList BasisList ImprintFile”). The imprints com-
puted for the 979 molecules along with the basis set of molecules
are part of the data archive associated with this paper.

We generated the molecular superpositions for the 22 test
cases using standard ligand-based hypothesis generation pro-
cedures and default parameters (“Surflex-Sim hypo InputMol-
eculeList log”). For each case, this resulted in up to 100 scored
superpositions. For each target, the top scoring superposition
was selected as the model for testing against two different
chemical libraries: (1) the cognate drugs plus 850 screening
ligands and (2) the cognate drugs of the target in question along
with drugs of the other 21 targets. In the latter case, this provided
a more rigorous test of the methodology with respect to
selectivity than if we used all 979 drugs, which would have
decreased the proportion of potentially confusable chemical
structures. This also focused the background on a well-
characterized set of drugs.

To evaluate the utility of these models, the two screening
libraries were tested, again using standard procedures and
parameters (“Surflex-Sim align_list TestLibrary HypoList logtest”
where HypoList contained the pathnames to the mol2 files
comprising the highest scoring superposition). The score of a
ligand against a model was the maximum mean similarity of a
single pose of the ligand to the individual molecules comprising
the model. So, the scores reflected the extent to which a ligand
could best mimic the joint superposition of molecules within a
model.

Quantification of Performance. Evaluation of the results
of the computations emphasizes the enrichment of known
ligands over other ligands based on a ranking generated from
virtually screening libraries consisting of cognate ligands mixed
within a background of other ligands (as seen in a number of
recent reports of both docking and molecular similarity3-7,9,18).
Quantification of the degree of separation between true positive
ligands and false positives was done by using receiver operating
characteristic (ROC) curves along with the corresponding areas
underneath the curves. Given a set of scores for positives and
negatives, the ROC curve plots the true positive proportion (Y
axis) with the corresponding false positive proportion (X axis)
at all possible choices of some threshold that would mark a
binary distinction between a prediction of positive or negative
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class membership. The perfect ROC curve goes from [0,0] to
[0,1] to [1,0] and results in an area of 1.0. Complete intermixing
of positive and negative scores gives an area of 0.5, with areas
less than 0.5 reflecting the case where true positives are ranked
lower than false positives.

We also report screening enrichment values, which have a
more intuitive interpretation. The result of a virtual screening
exercise, in practice, is to take a small percentage of the top-
ranked compounds and test them experimentally for activity
against the target of interest. Theoretical enrichment rates (the
fold excess of observed hits to expected hits given a selected
subset of a library) are computable from the data that underlie
ROC analyses. Enrichment rates are dependent on the proportion
of the library chosen for screening, which is based on the score
threshold applied to define the subset. With large libraries,
enrichment rates simplify to the ratio between true and false

positive rates at different proportions of the top ranked
molecules.18 Maximal enrichment values are typically seen with
the very highest ranked molecules within the library.

Results

In what follows, we present three primary results, based on
application of the four methods described above (see Methods
for details about the data sets, computational methods, and
specific procedures).

Drug and Target Similarities. Due to the size of our data
sets, pairwise computation of molecular similarities required on
the order of a million individual ligand/ligand similarities. Rather
than employ the morphological similarity method directly, we
employed the surrogate molecular imprinting approach (which
is much faster) to infer similarities in these experiments. Our
previous work focused on the use of this technique for

Figure 3. Examples of compounds used for model construction for each of 22 different biological targets. For each compound, the target name and
compound name are given: (A) lanosterol demethylase, ketoconazole; (B)D-Ala-D-Ala carboxypeptidase, amoxicillin; (C) dihydropteroate synthase,
sulfabenzamide; (D) DNA gyrase, levofloxacin; (E) HIV reverse transcriptase, lamivudine; (F) L-type calcium channel, nifedipine; (G)
acetylcholinesterase, pralidoxime; (H) angiotensin I converting enzyme, trandolapril; (I)â-1,2,3-adrenergic receptor, timolol; (J) opioid receptorµ,
oxycodone; (K) voltage-gated Na+ channel, lidocaine; (L) estrogen receptor, dienestrol; (M) progesterone receptor, progesterone; (N) androgen
receptor, danazol; (O) gluco/corticosteroid receptor, prednisone; (P) COX-I COX-II, acetaminophen; (Q) GABAA receptor barbiturate site,
phenobarbital; (R) GABAA receptor benzodiazepine site, midazolam; (S) muscarinic acetylcholine receptor, hyoscyamine; (T) histamine receptor,
brompheniramine; (U) NaCl cotransporter renal, metolazone; (V) sulfonylurea receptor, tolazamide.
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computations involving screening compounds.38 Consequently,
for this work, we wanted to verify that the method yielded the
expected results within the space of small molecule drugs. Figure
4 shows a plot comparing the distance between pairs of
molecules computed by direct molecular similarity and by the
surrogate of imprint distance for each pair. We computed over
15 000 pairwise distances among the 979 drugs in the present
study. The overall correlation between the two methods was
0.79 by Pearson correlation. Importantly, molecular pairs with
close distances measured by imprint identify molecular pairs
that have close distances measured by direct molecular similar-
ity, and vice versa. Thus, imprint distances may be used as a
fast surrogate computation in place of direct molecular similar-
ity.

Clustering. These fast distance computations are particularly
useful in clustering applications. Figure 5 shows a two-way
hierarchical clustering of 48 drug targets and their cognate drugs
(single-linkage hierarchical agglomerative clustering with an
optimization of the rendering order of the dendrogram).44 The
intertarget distances were computed from the Euclidean dis-
tances between the imprints of the ligands of the respective
targets. The interdrug distances were computed by Euclidean
distance between the imprints of molecule pairs. The Methods
section contains additional details.

At the top of Figure 5, the full target and drug clustering are
shown, with the target dendrogram at left and the drug
dendrogram at the top. Below that, two subsets are enlarged,
with the orientation rotated clockwise. For the target clustering,
note that the tree structure induced is in the same spirit as
classical pharmacology, with the characterization of the effects
of drugs being driven by drug structure. In our clustering, targets

that group together within common subtrees have ligands that
are similar under the imprint-based distance metric, with the
analogous observation for drugs that group together. If it were
the case that the computed distances between ligands were
unrelated to the biological effectors of their pharmacology, we
would not observe the formation of blocks of black in the two-
way clustering.

These blocks, in the target dimension, indicate a series of
drugs that all bind the same target where the imprint distances
between the drugs was sufficient to lead to the grouping. We
observe a number of sensible target groupings. For example,
the steroid receptors that are targets of the sex hormones
(androgen, estrogen, and progesterone) segregate tightly, with
the glucocorticoid and mineralocorticoid receptors also cluster-
ing together. We observe a number of the amine-typeGPCRs
segregating, with the muscarinic and histamine receptors group-
ing closely together, as expected from the frequent overlap
among the ligands of the targets.

In the enlargement of the two small subsets of the drugs from
the full dendrogram, not all targets are populated with cognate
drugs, since the drugs hit a subset of the 48 targets overall. We
observe a striking enrichment of drug groupings with overlap-
ping annotated targets. All of the drugs within the top enlarged
subtree share at least one target: the serotonin (5HT) reuptake
transporter. These drugs include some first-generation tricyclic
antidepressants (e.g., clomipramine) that have broad effects
against many targets. The drugs also include sertraline (Zoloft),
sibutramine (Meridia), and benzphetamine (Didrex), whose
effects are substantially more specific against the transporters.
In clinical practice, sibutramine and benzphetamine are used
for weight loss, with sertraline used as an antidepressant. Note
that the structures of the drugs within this group exhibited wide
structural diversity, but the methods used for structure com-
parison were not dominated by 2D structural differences among
the drugs.

Within the lower half of the bottom enlarged block, we see
a separate group of psychopharmaceuticals typified by pro-
mazine (Sparine), with the chief difference being a lack of
activity against the reuptake transporters of the top block.
Several of these are used as antipsychotic agents, but the agents
have a wide variety of effects against a number of biological
targets, and the specific selectivity profiles define their clinical
uses. The top half of the bottom block includes primarily first-
generation antihistamines, such as diphenhydramine (Benadryl),
which have almost universal muscarinic side effects. With one
exception, all of the drugs within the bottom block were
annotated as including effects against the histamine H1 receptor,
with nearly all sharing the muscarinic receptor as a documented
target. The single apparent outlier (based on annotation) within
the bottom block is methadone, which is aµ-opioid receptor
agonist used clinically in treatment of opiate dependence.
However, methadone’s side effects include dry mouth, urinary
retention, sweating, and reduced bowel motility,45 which are
all associated with muscarinic activity.46 In the context of this
molecular similarity driven group assignment, theµ-opioid
ligands were among the least well cosegregated, but we believe
that much of the dispersion can be explained by widely varying
side effects of the drugs owing to disparate off-target specifici-
ties. Note also that theµ-opioid receptor itself segregated away
from the histamine and muscarinic receptors as well, despite
methadone’s placement.

Distributional Analysis of Pairwise Similarities. Clustering
diagrams can be very useful as visualization tools and may give
rise to suggestive observations, but they do not directly support

Figure 4. Plot of the relationship between pairwise molecular distance
computed by imprint and by direct molecular similarity computations.
The Pearson correlation coefficient is 0.79. Molecular pairs with close
distances measured by imprint identify molecular pairs that have close
distances measured by molecular similarity, and vice versa. In particular,
for the closest 10% of pairs by similarity, over 80% of the imprint
distances are within the lowest quartile of imprint distances overall.
Also, for the closest 10% of pairs by imprint, over 80% of the similarity
distances fall within their lowest quartile overall. For large distances,
the correspondence in pairs that are identified by each method is even
tighter. Thus, imprint distances may be used as a fast surrogate
computation in place of direct molecular similarity.
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quantitative conclusions. We have shown previously that the
morphological similarity metric is well-correlated with competi-
tive ligand binding,19 and we presented data above that the
imprint-based distance computation is a good surrogate, but the
directquestion of whether the imprint-based surrogate similarity
metric will yield higher similarities for drug pairs that share a
target than for drug pairs that do not has not been formally
addressed. Figure 6A shows the cumulative histogram of the
two relevant distributions of imprint-based similarities. The
distribution of pairwise similarities for drugs sharing at least
one target is shifted significantly to the right (p , 0.01 byt-test).
This is the quantitative reason behind the appearance of black
blocks in the drug dimension of the clusterings shown in Figure
5.

We carried out a similar computation for comparing target
pairs by constructing five groups of target pairs. The first such

group consisted of target pairs that shared no annotated drug
overlap (936 total pairs), the second consisted of pairs that
shared low overlap (defined as 1-19%, 82 total pairs), the third
consisted of pairs with medium overlap (20-79%, 92 pairs),
the fourth consisted of pairs with high overlap (80-99%, 13
pairs), and the fifth consisted of self/self pairs (100% overlap;
48 “pairs”). An example of a target pair with no annotated drug
overlap was the glucocorticoid receptor and topoisomerase II;
low overlap was exemplified by theµ-opioid receptor and the
muscarinic acetylcholine receptor; medium overlap was exem-
plified by the histamine and muscarinic receptors; high overlap
was exemplified by COX-I and COX-II.

Recall from the Methods that ligand identities arising from
drug overlap between targets or from self/self target comparisons
are not included in the target similarity computation. Figure 6B
shows the cumulative histograms for all five target pair groups,

Figure 5. Two-way hierarchical clustering of drug targets and drugs. A full clustering of 48 targets and their cognate drugs is shown across the
top. The two shaded areas are depicted below (rotated clockwise), with the target dendrogram across the top and two portions of the drug dendrogram
at the right. The target dendrogram results from considering the imprint-based distances of the ligands of each of the 48 drug targets, with the
ligands of each target considered as a group. The drug dendrogram results from considering each drug individually. Black blocks indicate that a
particular drug has a known effect against a particular target. The appearance of blocks of black, both in the vertical and horizontal directions,
indicates that the targets and the drugs segregate sensibly on the basis of considerations of molecular structure alone.
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with similarity increasing monotonically from no target overlap
through each of the cases with increasing target overlap. The
differences between the no overlap pair set with all other sets
are highly statistically significant (p , 0.01 byt-test). The no-,
low-, and medium-overlap pair sets compared with the same
target pair set were similarly significant. The high overlap case
compared with the case of the same target distribution was not
significant byt-test atp ) 0.05. Note that there are a number
of examples where no annotated overlap exists, for example,
androgen and estrogen receptor pair, but where both in the
clustering of Figure 5 and in the computation of target distance
here (the target similarity was 0.81) the computational method
suggests significant overlap. Such cases will be considered
further in the Discussion.

Ligand-Based Virtual Screening. We built ligand-based
models of each of the 22 targets, prototypical ligands for which

are shown in Figure 3. These targets had the largest number of
known drugs from our curation effort, so it was possible to
induce models based on superpositions of two or three drugs
for each target while having enough remaining cognate drugs
to test each model. In each case the drugs used to construct the
models were chosen randomly. Choice of two versus three drugs
was based on the total number of identified drugs. The Methods
section has additional details regarding model construction.

The issue of chemotype diversity in retrieval of cognate
ligands based on very limited information in model induction
deserves attention, and theµ-opioid receptor is a suitable
example. Figure 7 shows the results of model induction for the
µ-opioid receptor. Three molecules were used; two were
morphinans (naloxone and oxycodone) and one was not
(fentanyl). Recall from the discussion above that pure molecular
similarity computations did not result in aggregation of all
µ-opioid ligands into a single subtree of our clustering.
Considering the structural diversity present within the drugs,
this should not be surprising. Whereas the very rigid morphinan
derivatives cannot display much variation in molecular surface,
molecules such as fentanyl can. Notwithstanding this diversity,
the superposition of fentanyl onto the moprhinans in the model
construction is convincing. The amine functionality is perfectly
superimposed, with the carbonyl oxygen corresponding to an
important hydrogen-bond acceptor, based on the structure-
activity relationships evident from the other known ligands. The
hydrophobic portions of fentanyl are also well-matched to the
morphinan volumes.

While the superposition itself is convincing, the proof of
utility lies in the ability of such a model to yield a ranking of
molecules in a virtual screen where true ligands are ranked above
nonligands. We conducted a screen of a library against the
model, where the library included the cognateµ-opioid ligands
mixed with a set of screening compounds (see Methods for
details). Figure 7 shows the structures of six different cognate
µ-opioid ligands, ranked by their position in the screen. The
number above each ligand is the percentile within the ranking.
The ranking illustrates that the model is sufficiently accurate
to identify even nonmorphinans at very low false positive levels.
Computation of a full ROC curve based on the scores of the
cognate ligands and nonligands yielded an area of 0.982 with a
maximal enrichment of 283 of cognate ligands over nonligands
at the top of the ranking.

Figures 8 shows the corresponding ROC plots for each of
the 22 targets for which models were constructed. In all but
three cases, retrieval of over 70% of the true positives was
achieved with false positive rates of less than 5%. Table 1
reports the ROC areas and enrichment rates for the 22 screening
runs. The maximal enrichment rates exceeded 100-fold in 20/
22 cases. These results compare favorably with the best reported
performance of docking methods.4,9

Selectivity of Ligand-Based Models.A common, and not
unreasonable, criticism of virtual screening experiments con-
structed as just described is that the background molecules may
not be druglike and therefore represent an easy case for
measuring enrichment. Further, such experiments do not address
a key issue in drug design, that of selectivity. The question is
whether a computational model will appropriately distinguish
between confusable ligands (e.g., androgen versus estrogen
receptor ligands). To address this issue, we ran an additional
22 virtual screens as above, but we employednoncognate drugs
as the background for each of our models. These were the
annotated drugs of the 21 other targets. We had expected this
to be a challenging task, given the presence of confusable ligands

Figure 6. Cumulative histograms showing the degree of separation
between drug/drug similarities and target/target similarities under
different conditions. Panel A illustrates the separation between drug
pair similarities for drugs that share a target (green) and drugs that
share no target (red). The similarities for drugs that share a target are
significantly higher as a population (p , 0.01 by t-test). Panel B
illustrates a similar feature for target similarities inferred from their
cognate drugs’ similarities. The red curve depicts the intertarget
similarities for targets that are annotated as sharing no cognate drugs
(936 target pairs). The green curve depicts the self/self target similarity
(48 targets total). Blue, cyan, and purple depict, respectively, the
intertarget similarities for low, medium, and high overlap pairs of targets
(82, 92, and 13 pairs total).
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within the background. For example, in the case of theµ-opioid
model (shown in Figure 7), the presence of many ligands of
amine-type GPCRs within the screening library presented a

potential challenge. However, the ROC area and maximal
enrichment were 0.980 and 121-fold, both comparable to the
results above using screening compounds as the background.
On the basis of the observations from the clustering exercise
whereµ-opioid ligands were spread out among the drugs instead
of being tightly segregated, the specificity of theµ-opioid model
is somewhat surprising. It appears that by inducing a model
that requiressimultaneoussimilarity to a specific conformation
of each of multiple superimposed ligands, we are better able to
segregate cognate ligands than in the case where we are asking
a less constrained question about molecular similarity. Put more
concretely, methadone fits very well into the model ofµ-opioid
activity, but methadone can also look like the ligands of other
targets as well, whereas other opioids cannot (notably the
relatively rigid morphinans).

Figure 9 shows the ROC plots using the background of
noncognate drugs in the screens, which quantify model selectiv-
ity. The results are very similar to those shown in Figure 8,
both in absolute terms and with respect to the rank order of
performance of the models. Table 2 reports the ROC areas and
enrichment rates of these specificity screens, with 17/22
exceeding 80-fold enrichment. Antihistamines were perfectly
separated from both the screening compounds and from the other
drugs, notably including antimuscarinic compounds. Steroid
receptor models were generally very successful in avoiding
confusion among the different steroid activity classes. The

Figure 7. Model based on opioid receptorµ ligands. Panel A shows the superposition of naloxone and oxycodone, both used in the model, and
classic opioid ligand structure (morphinan derivatives). Panel B superimposes fentanyl, which is a non-morphinan. It is a competitive agonist and
was also used in the model. The molecules shown below the graphic are allµ-opioid ligands and were tested against the three-ligand superposition
shown in B using two different background chemical libraries. Above each molecule is the name along with the percentile ranking among the
background of screening compounds.

Table 1. Enrichment of Cognate Drugs Using a Screening Compound
Background for 22 Different Biological Targets

target name
max.

enrichment
ROC
area

L-type calcium channel 850 1.000
histamine receptor 850 1.000
GABAA barbiturate site 744 0.999
NaCl cotransporter 708 0.998
HIV reverse transcriptase 425 0.998
GABAA benzodiazepine site 765 0.991
progesterone receptor 142 0.991
dihydropteroate synthase 773 0.988
DNA gyrase 283 0.986
D-Ala-D-Ala carboxypeptidase 447 0.985
muscarinic acetylcholine receptor 304 0.983
â-adrenergic receptor 283 0.983
acetylcholinesterase 283 0.982
opioid receptorµ 283 0.982
lanosterol demethylase 283 0.977
sulfonyl urea receptor 213 0.971
angiotensin I converting enzyme 567 0.962
estrogen receptor 121 0.955
gluco/corticosteroid receptor 63 0.941
voltage-gated sodium channel 155 0.925
androgen receptor 121 0.908
COX-I/COX-II 9 0.831
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weakest retrieval is seen with the COX-I/II model. This is not
terribly surprising, since the NSAIDS (typified by aspirin,
acetaminophen, and naproxen) not only display divergent
specificity for the COX-I/II enzymes but they display a host of

different side effects. For example, both aspirin and acetami-
nophen are nonspecific with respect to COX-I/II, but the former
has significant gastrointenstinal bleeding complications and
cardioprotective effects that the latter lacks.

Discussion

Our results represent an expansion and generalization of the
validation of the four computational methods used. The
morphological similarity and molecular imprinting approaches
exhibited intuitive behavior when applied both to segregation
of drugs and drug targets, both in a qualitative sense in the
clustering and quantitatively when considering the underlying
distributions. The computations involving the Surflex-Sim
ligand-based modeling and virtual screening methods are a
substantial test of such an approach, with explicit models built
that cover roughly one-quarter of approved small molecule
therapeutics.18 Our focus in previous work was methodological,
and we showed that the Surflex-Sim methodology quantitatively
outperformed 2D methods, but the validation was limited to
four targets.18 In the present work, the 22 biological targets that
were the subject of modeling represent a broad diversity of
biology and pharmacology. Further, the structural diversity of
drugs in most of the cases was qualitatively as high as in our
previous report. The performance we observed paralleled that
reported earlier. To achieve 60-70% recovery of known cognate
ligands, typically between 1 and 5% of the random screening
ligands would be found as false hits. This level of performance

Figure 8. ROC plots reflecting the enrichment of cognate ligands against a background of screening compounds.

Table 2. Selectivity for Cognate Drugs over Noncognate Drugs for 22
Different Biological Targets

target name
max.

enrichment
ROC
area

L-type calcium channel 246 1.000
histamine receptor 245 1.000
GABAA barbiturate site 209 0.995
NaCl cotransporter 241 0.999
HIV reverse transcriptase 123 0.996
GABAA benzodiazepine site 212 0.982
progesterone receptor 80 0.981
dihydropteroate synthase 237 1.000
DNA gyrase 81 0.971
D-Ala-D-Ala carboxypeptidase 192 0.984
muscarinic acetylcholine receptor 85 0.962
â-adrenergic receptor 82 0.963
acetylcholinesterase 82 0.980
opioid receptorµ 121 0.980
lanosterol demethylase 81 0.986
sulfonyl urea receptor 61 0.902
angiotensin I converting enzyme 163 0.898
estrogen receptor 51 0.946
gluco/corticosteroid receptor 187 0.931
voltage-gated sodium channel 21 0.857
androgen receptor 34 0.855
COX-I/COX-II 5 0.732
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is competitive with that of the best available docking methods
when exploiting well-determined protein structures.2-5,7,9 As
before, cognate ligands with widely differing chemotypes were
identified at very low false positive rates. Robust performance
in this large-scale test has a significant practical impact, offering
a highly automated method for predictive modeling for lead
identification and optimization in cases where protein structures
are unavailable.

Robust modeling of many targets offers an additional potential
benefit. One of the most challenging aspects of modern drug
discovery is the extent to which non-target-related side effects
must be discovered through clinical trials or, worse, through
clinical practice. Side effects and drug-drug interactions are
observed with a great number of therapeutic drugs on the market
today. These undesirable activities may stem from specific
binding to an unintended target and may occur at any point in
the absorption, distribution, metabolism, and elimination of
drugs. For many drugs (and almost certainly for drugs in the
modern discovery process), the primary (cognate) biological
target has been identified, but secondary (noncognate) targets,
transport routes, and metabolic pathways often remain unspeci-
fied. Consider what could be gained by systematic modeling
of as many targets of pharmacological effects as possible, given
the available data regarding the biological effectors of such
effects (both identities and structures where available) and the
respective ligands. With sufficiently accurate models of a large
enough proportion of pharmacologically relevant proteins,

computational experiments might reveal hypotheses about
undesirable effects of drugs that are testable using in vitro
methods.

We are not claiming that our methodology is fully up to this
challenge, but there is some reason for optimism. The optimism
derives partially from our observations about the breadth of
applicability and quantitative sensitivity and specificity of the
models and similarity methods. However, observations relating
to the nominalmistakesof the methods contribute as well. For
example, the target clustering shown in Figure 5 shows a number
of groupings directly supported by annotated overlaps in their
cognate drugs, but we also observe some groupings without such
support. For example, we see the sex hormone nuclear receptors
grouped together despite no annotation of cross-talk among the
receptors and noncognate ligands. It turns out that there are a
number of documented examples of androgen ligands binding
the estrogen receptor and vice versa.47 A more incongruous
grouping places a cardiac potassium channel near the several
amine-type GPCRs. But recall from the Introduction the
established effects of terfenadine (a histamine antagonist) against
hERG.33 This is a voltage-gated potassium channel, as is the
potassium channel seen in the target clustering among the amine-
type GPCRs. These examples suggest that putative overlaps that
are revealed by considering ligand similarities might reveal
biologically relevant pharmacology.

In this vein, in addition to considering the quantitative
separation of cognate from noncognate drugs for each of our

Figure 9. ROC plots reflecting the enrichment of cognate ligands against a background of other drugs.
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22 models, we also analyzed the composition of the top-ranking
noncognatedrugs. In the case of any particular model (target
A) where multiple ligands of another target turned up as high-
scoring (cognate ligands of target B), there were four interesting
situations: (1) primary target overlap, where the ligands of
targets A and/or B actually bind to both targets; (2) tertiary
target overlap, where the ligands of A and B each are known
to bind target C, causing unintentional pharmacological effects;
(3) drug transporter overlap, where the ligands of A and B share
active transporter proteins; and (4) drug metabolism overlap,
where the ligands of A and B share enzymatic metabolic
machinery. The following discussion illustrates several examples
of these overlaps, each of which relate to a side effect or drug-
drug interaction of clinical significance.

Case 1: Primary Target Overlap. Primary target overlap
is the instance in which two drugs both bind and affect the same
biological targets (as in the sex hormone nuclear receptor case
alluded to above). Our first example of target overlap concerns
barbiturates and sodium channel (SCN) antagonists, two classes
of drugs that target ligand-gated ion channels. The GABAA

receptor (GABAAR) is a pentameric GABA-gated chloride
channel with binding sites for barbiturates, benzodiazepines, and
the natural ligand GABA. SCNs are heterotrimers consisting
of a channel-forming, 24-transmembrane domainR subunit with
two regulatoryâ subunits. SCN antagonists such as antiarrhyth-
mics, local anesthetics, and anticonvulsants bind a common
receptor site on the SCNR subunit, albeit in a nonidentical
manner.48

Three barbiturates were used to generate the GABAAR model,
and their structures and resulting superposition are shown in
Figure 10A. The annotated ligands of GABAAR exhibited
relatively little structural diversity, and six cognate barbiturates
were the highest scoring molecules in the screen. However,

among the 14 highest scoring molecules in the screen were four
SCN antagonists, specifically the anticonvulsants phenytoin,
mephenytoin, ethotoin, and felbamate. The converse effect was
also observed. Three SCN drugs were used to generate the SCN
model: two anticonvulsants (mephenytoin, topiramate) and a
Class Ib antiarrhythmic (lidocaine). The 27 highest scoring
ligands included all nine barbiturate drugs in the set. Figure
10B shows the superposition of mephenytoin onto the GABAAR
model.

It has been established that the GABAAR and SCN drugs
overlap in their effects on the two proteins. The three barbitu-
rates used to generate the GABAAR model have anticonvulsant
actions as well as the traditional sedative effects of other
barbiturates. Phenobarbital and pentobarbital have been shown
to inhibit SCN function like the anticonvulsant phenytoin.49,50

Further, pentobarbital has been shown to be an antagonist of
SCNs in human brain and heart.51-53 The barbiturates and the
prototypical SCN antagonists are nearly 100 years old,54 and
the early pharmacology was, of course, phenomenological. The
primary targets for these drugs were well-established by the early
1990s.51,52,55 The effects of the barbiturates on SCNs were
established roughly concomitantly.49-53 The multidecade gap
between pharmacological and biological characterization was
mostly due to the slow evolution in biological investigation
methods, but even within the context of modern biology, we
believe that comprehensive computational modeling will help
to suggest direct experiments that willacceleratethe linkage
between pharmacological observation and specific biology.

The anxiolytic meprobamate was included in our noncognate
drug screen, having been initially annotated as targeting the
benzodiazepine site of GABAAR.46 In fact, meprobamate was
the next highest scoring molecule after the barbiturates within
the GABAAR barbiturate site model. Meprobamate was syn-

Figure 10. Model based on GABAAR barbiturate site ligands. Panel A shows the superposition of phenobarbital, mephobarbital, and primidone,
which were the three ligands used to induce the model. Panel B shows the superposition of mephenytoin onto the model (model ligands in green).
Panels C and D show the superposition of meprobamate onto the model from two slightly different orientations (the view in D is tilted back). The
lack of structural variation in the barbiturates leads to excellent statistical performance of the model against both chemical library backgrounds.
However, the model is able to identify drugs of different chemotypes that have been shown to have overlapping effects (see the text for details).
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thesized and became pharmacologically characterized in the
1950s, with its clinical effects being similar to those of
benzodiazepines.46,54 Figure 10, panels C and D, show mep-
robamate superimposed onto the GABAAR barbiturate site
model. Meprobamate is a nonbarbiturate chemically, but it has
been shown (i) to activate directly the GABAAR in a barbiturate-
like manner,56 and (ii) to enhance allosterically benzodiazepine
binding to the GABAAR in a manner similar to that of
barbiturates.57 It may be experimentally challenging to show
direct competitive binding of meprobamate with barbiturates
to GABAAR, but the idea is well motivated by the computational
results illustrated in Figure 10.

Our second example of primary target overlap was observed
using our models for three GPCRs: muscarinic acetylcholine
receptor (mAChR), histamine H1 receptor (H1R), andµ-opioid
receptors (muR). As seen from the ROC analysis above, these
models were highly accurate in separating true positives from
false positives with both background sets. However, these three
models scored each other’s ligands as the majority of the top
25 molecules. There is ample evidence that this computational
overlap reflects real biological effects. For example, many first-
generation antihistamines such as brompheniramine, chlor-
pheniramine, and diphenhydramine are H1 receptor antagonists
but also have central and peripheral antimuscarinic side effects,
such as sedation and dry mouth.58,59The antimuscarinic effects
of some H1 antagonists have been quantified in binding assays;
mequitazine, cyproheptazine, clemastine, diphenylpyraline,
promethazine, homochlorcyclizine, and alimemazine have high
affinity for muscarinic receptors with dissociation constants
ranging from 5 to 38 nM.60 Even third-generation antihistamines
such as desloratadine have been shown to be potent muscarinic
antagonists in competitive assays and to have antimuscarinic
effects in vivo, albeit at doses greater than recommended for
antihistamine therapy.32,61

The µ-opioids show variation in the degree of muscarinic
side effects such as dry mouth and urinary retention, and this
was reflected in our mAChR screen. Variation in the side effects
of the class of compounds was also reflected in our clustering
analysis, with the compounds segregating in several separate
subgroups instead of within a single one. Theµ-opioids fentanyl
and morphine were both highly ranked in our mAChR screen.
Fentanyl has been shown to be a muscarinic antagonist in a
competitive binding assay,62 and activation of spinal muscarinic
receptors is thought to contribute to the analgesic effect of
morphine.63 The opioid loperamide was scored low using our
mAChR model, and interestingly, dry mouth is a less common
side effect of this drug (except in cases of overdose).58

Since assays for direct binding and for functional activity
are increasingly available, we believe that the use of large-scale
predictive computational modeling of target activity may offer
a practical method for producing testable hypotheses in pre-
clinical drug development. While it may be prohibitive to
experimentally screen for hundreds of different biological
activities, the cost of screening for a much smaller number based
on predictions of the sort we have described may be feasible.

Case 2: Tertiary Target Overlap. Another case we
observed in our noncognate drug screen was similar to primary
target overlap but involves neither the primary target of the drugs
used to construct a model nor the primary target of the high-
scoring noncognate drugs. What we term a tertiary target is a
commonsecondarytarget to ligands of both primary targets.
Our first example from above involving the barbiturate GABAAR
agonists and SCN antagonists shows a tertiary target overlap
in addition to their primary target overlap. The barbiturates

phenobarbital and pentobarbital and the SCN antagonists
felbamate, phenytoin, and topiramate have been shown to inhibit
glutamatergic NMDA receptors.50,64-68

There is a subtlety in uncovering these tertiary target effects
that is worth discussing. In the case of primary target overlap,
we are uncovering exactly what the models are supposed to
uncover: competitive ligands at the site being modeled (e.g.
the antihistamine clemastine binding the muscarinic receptor).
In the case of tertiary target overlap, an additional benefit is
the uncovering of effects that have their roots in the lack of
perfect specificity inherent in defining a functional model of a
protein binding site based on the structures of its ligands. When
the ligands for a protein are not perfectly specific and share
common secondary targets, the model we induce will likely
identify ligands of both targets. This is quite different from the
situation we would see if we had a well-determined structure
of our primary target and were making use of an effective
docking strategy. In this case, we would identify primary target
overlap (e.g., mephenytoin binding the barbiturate GABAAR
site). But in cases where there isno primary target overlap
between two ligands, but there is overlap with a tertiary target,
a protein structure-based method would reveal no linkage
between the two ligands.

The second example of a potential common tertiary target
falls into this category and was observed with cyclooxygenase
(COX) inhibitors and nucleoside antivirals. COX-I and -II both
catalyze an endoperoxide synthase and a peroxidase reaction
in the conversion of arachidonate to the prostaglandin precursor
PGH2. COX-I and -II are inhibited by a set of chemically
diverse molecules (collectively known as NSAIDS), the majority
of which are organic acids that act as reversible competitive
inhibitors.46 Despite vast structural diversity in the COX screen,
several cognate NSAIDs were among the 25 highest scoring
molecules. However, there was a surprising high-scoring
chemical class. Six antiviral nucleoside analogues were among
the 30 highest scoring molecules. These included three nucleo-
side reverse transcriptase inhibitors (nRTIs; didanosine, lami-
vudine, stavudine) and three HSV DNA polymerase inhibitors
(acyclovir, ganciclovir, and trifluridine). There is an unusual
side effect in common among these nucleoside drugs, which
do not appear to haveanydirect COX-I/II effects; they are all
associated with mitochondrial damage and apoptosis. The gastric
mucosal cell death effects of NSAIDs have been proposed to
involve the mitochondrial apoptotic pathway.69 The same has
been suggested for ganciclovir-associated cytotoxicity.70

While the conjecture is somewhat speculative, we suggest
that the observed overlap among the NSAIDs and the nucleoside
analogues may involve shared targets in the human apoptotic
pathway, possibly involving modulation of Bcl-2 or Bcl-XL.
The NSAIDs sulindac, indomethacin, mesalazine and COX-II-
selective inhibitors have been shown to induce apoptosis in colon
carcinoma cells in vitro.71-74 The chemotherapeutic nucleoside
analogue gemcitabine is a potent inducer of apoptosis. While it
was not included in our noncognate drug database, it scored as
well as acyclovir within the COX model. Resistance to
gemcitabine-induced apoptosis is conferred by high expression
of Bcl-2 or Bcl-XL,75,76 and it has been suggested that direct
inhibition of Bcl-2 or Bcl-XL function should serve as a novel
strategy for pancreatic cancer therapy.77 Further, induction of
apoptosis has been suggested as a mechanism of mitochondrial
toxicity resulting from HIV therapy involving nRTIs.78,79

It is possible that these seemingly unrelated classes of drugs
(NSAIDs and nucleoside antivirals) all induce the apoptotic
pathway by binding to Bcl-2 or Bcl-XL proteins. Due to the
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central role of Bcl-2 and Bcl-XL in apoptosis, binding assays
have been developed, and small molecules that bind Bcl-2 and
Bcl-XL are being investigated as potential new cancer thera-
peutics.80 Our data suggesting a tertiary target overlap, coupled
with evidence from the literature, point to a potentially specific
shared role for NSAIDs and nucleoside antivirals in the
modulation of apoptosis. We propose that direct interaction with
Bcl-2 and Bcl-XL would be an interesting avenue to investigate.

Case 3: Drug Transporter Overlap. The preceding two
cases shared a similar feature: a linkage between two drugs
would manifest by some shared pharmacological effect due to
modulation of a shared biological target. The case of drug
transporter overlap manifests as drug-drug interactions involv-
ing dosage. These linkages share the feature with tertiary target
overlap that docking methods are likely to be less effective in
uncovering them than ligand-based approaches. Small molecule
transport proteins are expressed in many tissues, such as
intestine, brain, liver, and kidney, and can affect one or more
stages in the adsorption, distribution, and elimination of drugs.81

For example, the enteric transporter PEPT1 mediates intestinal
absorption of small peptides, aminoâ-lactam antibiotics, and
other peptide-like drugs.82 Conversely, ATP-dependent trans-
porters such as the p-glycoprotein (P-gp) and MRP2, which are
located on the apical brush border membrane and have very
broad substrate specificity, can decrease intestinal absorption
of drugs via efflux into the intestinal lumen.81 Drugs that interact
with the same transporter can affect each other’s pharmaco-
kinetic profiles through competition for or inhibition of the
transporter. Since some transporters have very broad substrate
specificity, it is not particularly significant when our models
identify sets of ligands that are their joint substrates. These
interactions typically manifest asincreasesin the concentration
of one of the drugs involved in such an interaction. We present
an example where a specific set of structural features may
explain a drug-drug interaction that manifests as adecrease
in the concentration of drug over time.

We observed this in the screen of ourâ-adrenergic receptor
(â-AR) model. Theâ-AR model was generated using the
â-blockers labetolol and timolol. The model performed well,
with cognateâ-AR antagonists (nadolol and metipranolol) as
the highest scoring molecules in the screen. Figure 11A shows
the derived superposition. Surprisingly, sixâ-lactam antibiotics
were also among the 25 highest scoring ligands in theâ-AR
test. Figure 11b shows ampicillin superimposed onto the two
ligands comprising the model. Note that the amine functionality

superimposes well, particularly in the context of the overlap
between the phenyl of ampicillin and thetert-butyl of timolol.
Further, the carboxylate of ampicillin is superimposed with a
hydrogen-bond acceptor functionality of both modeled ligands.

There is evidence of drug interactions between these two
classes of drugs, which we hypothesize to involve an overlap
in absorptive transport. Ampicillin has been observed to result
in decreased atenolol absorption in patients.83 This is a general
feature of orally dosedâ-blockers: atenolol, nadolol, propra-
nolol, and timolol have established drug interactions with
penicillins in general and ampicillin in particular.45 â-Lactam
antibiotics, including penicillins and cephalosporins, have been
shown to be substrates of multiple transporters such as PEPT1
and PEPT2, as well as members of the multidrug resistance
(MDR/MRP), organic anion (OAT), and organic cation (OCT)
families.36,84 Note that while the OCT family of transporters
are named for cation transport, they are known to transport
zwitterions as well.84 Studies suggest thatâ-AR antagonists may
be substrates for the organic cation transporter OCT2.85,86

Another mechanism by which one drug can reduce the intestinal
absorption levels of another is by inducing the expression of
human CYP3A487 or by enhancing expression of the P-gp efflux
pump.88 However, we found no evidence thatâ-lactam antibiot-
ics induce the expression of the cytochromes that metabolize
â-blockers (e.g. CYP2D6) or increase levels of P-gp.

The biopharmaceutics classification system (BCS), proposed
by Amidon et al. and adopted by the FDA, classifies therapeutic
agents based on mechanistic approaches to the drug absorption
and dissolution processes for predicting in vivo pharmacokinetic
performance.89 Wu and Benet have proposed a modification to
the BCS system that may be better for predicting overall drug
disposition, including routes of drug elimination and the effects
of efflux and absorptive transporters on oral drug absorption.37

In their modified BDDCS system (Biopharmaceutics Drug
Disposition Classification System), classifications are driven by
solubility (as with BCS) but make use of metabolism instead
of the permeability criteria of BCS. Within BCS, theâ-lactams
are class 3 drugs (high solubility, low permeability) as are
atenolol and nadolol, but otherâ-blockers fall within other
classes (e.g. labetalol, metoprolol, and propranolol are class I).
With the BDDCS system, many drugs remain in the same
nominal class as under BDS, but for different reasons. In
particular the BCS class 3 drugs atenolol and nadolol remain
BDDCS class 3 but are classed as such on the basis of high
solubility and poor metabolism (rather than poor permeability).

Figure 11. Model based onâ-adrenergic site ligands. Panel A shows the superposition of timolol and labetalol, which were the two ligands used
to induce the model. Panel B shows the superposition of ampicillin onto the model (model ligands in green). While it does not appear to be the case
that ampicillin directly affects theâ-adrenergic receptors, it appears that both the adrenergic ligands and ampicillin are substrates for some of the
same transporters (see the text for details).
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In the BDDCS system, Wu and Benet note that absorptive
transporter effects are frequently important in the intestinal
absorption of class 3 drugs, which is consistent with our
hypothesis.

Recall, though, that the orally dosedâ-blockers, as a group
irrespective of BCS or BDDCS classification, show drug
interactions with theâ-lactam antibiotics.45 Both classification
systems are based on measurable properties such as solubility,
permeability, and extent of metabolism, but neither was designed
to directly predict drug interactions that are based on transport
phenomena. Our observations suggest that there are subtle
structure-based effects that explain certain drug-drug interac-
tions as those we have detailed between theâ-lactam antibiotics
and theâ-blockers. We would propose that explicit modeling
of the substrates of the various transporters along with large-
scale computations of the sort we have done will further refine
our ability to characterize and predict drug-drug interactions
and may help to guide preclinical drug evaluation.

Case 4: Drug Metabolism Overlap. Overlap in drug
metabolism can manifest in the same fashion as with drug
transport overlap. A primary pathway of drug metabolism is
mediated by the cytochrome P450 (CYP) enzymes. For example,
grapefruit juice contains inhibitors of intestinal CYP3A4 and
thus reduces presystemic metabolism of some cardiovascular
drugs, which leads to overdose toxicity.90 Apart from shared
interactions with broadly acting metabolic enzymes, one ex-
ample of metabolic overlap in our results is seen with
barbiturates and SCN antagonists. Note that these also exhibit
both primary and tertiary target overlap. The SCN antagonist
felbamate inhibits CYP2C19 and this has been suggested to be
the mechanism by which felbamate increases plasma concentra-
tions of phenytoin and phenobarbital.91

Conclusions

We have reported the results of a series of computational
experiments on the product of a curation effort that annotated
the specific effectors of pharmacological effects for most known
drugs. Molecular similarity and imprinting methods showed
utility in inducing a taxonomy of drugs and drug targets in a
way that went beyond classical pharmacological description of
chemical classes and biological effects. The clusters of drugs
were consistent with their primary activities but also suggested
secondary effects. The performance levels of ligand-based virtual
screening on numerous diverse targets were competitive with
the best docking methods, and we believe that ligand-based
methods offer a viable and productive means to accelerate drug
discovery in the same way that protein-structure-based methods
have come to be used. The performance we observed in terms
of selectivity, in cases where confusable drugs and drug targets
existed, further strengthens the case for broad application of
methods such as these.

We observed four situations where predicted activities of
drugs had not been initially annotated. Two types manifest as
side effects (primary and tertiary target overlap) and two
manifest as drug-drug interactions involving effects on phar-
macokinetics (drug transporter or metabolism overlap). Interest-
ingly, broad application of a successful docking approach based
on protein structure would reveal a linkage between different
drug classesonly in the case of primary target overlap. However,
a number of our observations didnot involve primary target
overlap, but revealed interesting relationships. In these cases,
making use of models based on ligand structure was critical in
uncovering the effects. This work represents a step toward
systematic computational modeling of a large enough fraction

of pharmacologically relevant targets to support practical
hypothesis generation in preclinical drug discovery.

While our work has focused on a uniform methodology, we
would advocate modeling pharmacologically interesting targets
using the best available methods for each. Some groups have
reported success in making use of homology modeled structures
as the targets of docking, even in very hard cases such as
presented by GPCRs.92,93Others have applied QSAR to model-
ing the substrate specificity of transporters such as P-gp.94 We
hope that our observation of the utility of ligand-based methods
in uncovering shared nonprimary effects would inform the
strategies of others. We expect methods that seek to directly
model the physical structures of proteins to uncover linkages
only in the case of primary target overlap.

A number of groups have developed methods that address
ligand-based activity modeling.20,21,27Cramer, in particular, has
addressed 15 different targets in a single report using Topomer
CoMFA, with promising results.21 He described four cases of
increasing generality in modeling, which pose progressive
challenges for the topomer method (which considers molecular
fragments). Case 4 involved modeling chemical series with
negligible homology, which poses a difficulty for fragment-
based methods and any 2D-based methods. We believe that we
have convincingly demonstrated utility in Cramer’s case 4 on
a large and diverse set of targets. A particularly attractive feature
of the methods reported here is that the computational proce-
dures arenot labor-intensive. They are fully automatic and do
not require careful selection of the ligands used to induce a
model.

In our paper introducing the Surflex-Sim methodology,18 we
said, “It should be possible to enable rapid virtual screening
against many tens of biological targets, which might prove to
be of use in suggesting potential side-effect modulators of
molecules undergoing development toward clinical application.”
We believe that the present work demonstrates the feasibility
of that goal.
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